
Abstract

Real-time system software is notoriously hard to share and
reuse. This paper walks through the methodology and
application of ControlShell, a component-based program-
ming system for real-time system software development.
ControlShell combines graphical system-building tools, an
execution-time configuration manager, a real-time matrix
package, and an object name service into an integrated
development environment. It targets complex systems that
require on-line reconfiguration and strategic control.

ControlShell takes advantage of functional object hierar-
chies to enable code sharing and reuse. It gains flexibility
by supporting easy interconnectivity of these objects. It
features a unique configuration control system for chang-
ing operating modes.

The paper concludes by examining the application of this
framework to a teleoperated rover under development as a
joint effort by NASA, several Russian space research insti-
tutes, and US industry. The rover is able to function
remotely under control of a virtual reality interface.

1 Introduction

Motivation System programs for real-time command
and control are, for the most part, custom software. Mod-
ern real-time operating systems [1,2,3,4] provide some
basic building blocks—scheduling, communication, etc.—
but do not encourage or enable any structure on the appli-
cation software. Information binding and flow control,
event responses, sampled-data interfaces, network connec-
tivity, user interfaces, etc. are all left to the programmer.
As a result, each real-time system rapidly becomes a cus-
tom software implementation. With so many unique inter-
faces, even simple modules cannot be shared or reused.

An effective real-time programming environment must
facilitate sharing and reuse of program modules. It must

assist the programmer both in structuring complex systems
and in managing the system at run time. The framework
must also provide services and tools to combine modules
and build systems from reusable components. Finally, it
must meet the many challenges unique to real-time com-
puting, such as reacting to external temporal events, blend-
ing strategic-level command and low-level servo control,
and switching between different modes of operation. All
these challenges must be efficiently and smoothly handled
by the architecture.

Summary This paper presents the rationale and motiva-
tion behind theControlShell component-based program-
ming system. ControlShell implements several new design
concepts that have been proven effective in hard practice.
For instance, while it takes advantage of object-oriented
techniques, ControlShell differs from other object-oriented
systems in that ControlShell objects implement functional
units rather than model physical system components. Con-
trolShell takes advantage of inheritance of these objects to
provide complex functionality that is easily shared and
reused. Also, these objects retain their identity in the run-
time system, and are entered into an object name service.
This allows unlimited interconnectivity.

ControlShell also addresses the fundamental issue of how
to best merge event-driven reaction with feedback control.
ControlShell presents a unique approach that uses an
event-reaction programming system to change the data-
flow pattern in a block-diagram model—without necessar-
ily changing the diagram itself. This approach makes
small and large changes in code configurations equally
easy to implement. The result is a simple model that
encourages fine mode control, and thus fine state defini-
tion, while providing considerable flexibility and general-
ity.

This paper examines ControlShell, and illustrates its appli-
cation to the Marsokhod rover project.

2 Approach

To our knowledge, ControlShell is the only framework
combining component-based data-flow system construc-

The ControlShell Component-Based Real-Time Programming System, and
its Application to the Marsokhod Martian Rover

Stan Schneider Vincent Chen Jay Steele1 Gerardo Pardo-Castellote

Real-Time Innovations, Inc. Recom Technologies
954 Aster 1777 Saratoga Avenue, Suite 206

Sunnyvale, California 94086 San Jose, CA 95129

1. Under Contract to the Intelligent Mechanisms Group
of NASA-Ames Research Center, Moffett Field, CA



tion, event-driven state programming, a run-time execu-
tive, and transparent network connectivity.

ControlShell was developed to address a specific domain:
complex electro-mechanical systems. It has been driven
by practical applications from its inception [13,17,18,14,
15]. We start by describing the problem domain and objec-
tives. We then examine ControlShell’s architecture in the
perspective of the many other approaches to real-time soft-
ware development.

2.1 Strategic Objectives and Architectural
Decisions

Practical Focus ControlShell is driven by practical,
immediate considerations. It intentionally does not address
design-time verification of real-time deadline constraints,
nor guarantee that state machines will not deadlock.
Instead, ControlShell assumes its target systems will be
easily subjected to run-time validation both in simulation
and on real hardware. Many tools are provided for
addressing these issues at run time (execution profiling,
flexible missed-deadline response, etc.). This trade-off has
proven, in practice, to be very effective. For instance, it
frees developers from making difficult estimates of execu-
tion times of complex code, and allows a more general
state-programming model and complex state-transition
action routines. We have chosen, essentially, practical flex-
ibility over provable correctness, at the (minor) cost of
extra run-time testing.

Reuse and SharingControlShell concentrates on code
reusability and sharing. This is one of the factors that
drove the development of the “functional” object hierar-
chies. By building functional units rather than modeling
physical system components, ControlShell developers can
take advantage of complex system building blocks that can
be applied to many applications and physical systems. We
thus strike a compromise between functional block-dia-
gram tools (see below), and the power of object-behavior
inheritance.

Programming System. ControlShell is designed, from
the start, as a programming system. While many Con-
trolShell applications can be built without custom code by
linking pre-existing libraries, the emphasis has always
been on providing a development environment that tal-
ented programmers will be happy to work with. Con-
trolShell strives always to allow creative users to
implement inventive solutions beyond the framework
designer’s original intent.

Separable services ControlShell is structured as a set of
inter-related “services”. ControlShell strives to provide
tools that make sense in a complex system. Integration is

accomplished by providing extensive, open interfaces.
Since all interfaces between services are open; users may
choose to replace almost any portion of the system with
designs (or research results) more to their own liking. This
decision has resulted in a flexible system that still works
together (nearly) seamlessly.

Interconnectivity  Complex systems often have inter-
module interactions. For instance, an event-driven strate-
gic control module must be able to interact with motion
controllers, low-level routines must be able to interact
with each other and raise conditions that higher levels han-
dle. In a complex system, these interactions are often diffi-
cult to foresee or even characterize. ControlShell
addresses this challenge by a) retaining the identity of all
design-time objects in the run-time system, and b) provid-
ing a run-time “object name service”, so any module may
look-up any object at run time. This design provides very
flexible connectivity.

Networking ControlShell is integrated with a network
connectivity package called the Network Data Delivery
Service (NDDS). NDDS is a novel network-transparent
data-sharing system. It implements a “subscription” data-
passing model that allows multiple clients to transparently
and anonymously communicate data on a network. How-
ever, this functionality is beyond the scope of this paper,
see [5,12] for details.

Data Acquisition ControlShell is also tightly integrated
with RTI’s StethoScope graphical data acquisition tool.
StethoScope provides visibility and data collection for any
variable in the ControlShell system. See [12] for details.

2.2 Perspective

There are many approaches to developing real-time sys-
tem software, far too many to analyze them all here.
Instead, we attempt to survey the general categories of
tools, and differentiate their approaches from Con-
trolShell’s.

Hierarchy Specifications There are two quite different
issues in real-time software system design: hierarchy
(what is communicated), and superstructure (how it is
communicated).

Several efforts are underway to define hierarchy specifica-
tions; NASREM[6] and UTAP[8] are notable examples.
ControlShell makes no attempt to define hierarchical inter-
faces, but rather strives to provide a sufficiently generic
software platform to allow the exploration of these issues.

Block Diagram Editors There are several functional
block diagram editors and code generators. These include
SystemBuild/AC100 by Integrated Systems Inc., and Sim-



ulink (a.k.a. the Real-Time Workshop) by The Math-
Works, Inc.[11,3] These tools are heavily biased toward
the low-end controls market. As such, they have interfaces
for controls-design tools, and are powerful for choosing
gains, designing controllers, etc. While they do have some
facility for “custom” blocks, however, they are not
designed as programming systems. Code generated from
the block diagram combines both data objects and func-
tional blocks into monolithic structures at run time. As a
result, there’s little interconnectivity and limited ability to
develop complex, custom systems. These tools also do not
address event-driven reactive programming.

Real-Time Formalism ToolsThere are several “tradi-
tional” real-time formalisms. Products exist on the market
that implement some of these. For instance StateMate[7]
by iLogix is based on Karel's StateCharts, ObjectTime is
based on a Ward-Mellor variant called ROOM[22].

These systems concentrate on state machine behavior and
interaction. They target a different application audience
than ControlShell; they are mostly aimed at systems that
are complex due to concurrency, such as a telecommunica-
tions system connected to 400 lines.

ObjectTime (ROOM) is object oriented. However, ROOM
defines objects by modelling physical system components
as state machines. A state machine in ROOM is a single
object. This is fairly large-grained view of the world. In
ControlShell, the state-transition routines are the objects.
That allows users (even those working on very different
applications) to develop reusable libraries of transition
routine objects. Users can also inherit from base classes to
construct complex action routines. This is advantageous in
systems that perform non-trivial processing in the action
routines. ObjectTime does not deal with data-flow or feed-
back configuration issues.

Onika Onika [23] is a “software composition system”
from CMU. On the surface, it resembles ControlShell in
that it composes systems from blocks of code. However,
there are many major differences. Blocks in Onika are
independent tasks. This forces a very “large-grained”'
model, and is subject to loop delays. Onika supports sim-
ple changes in configurations (by substituting an entirely
new diagram), but not graphical definition of complex
configurations or event-driven reconfiguration. Onika does
not address object-oriented issues, state programming, net-
work connectivity, or automatic code generation.

Orcad/Esterel The Orcad system[10] provides an
object-oriented design approach for robotic systems.
Orcad combines control laws and reactive behaviors into
objects called robot-tasks. Along with the Esterel lan-
guage, Orcad strives for formal verification of temporal
properties of control programs.

As in Onika, blocks (called module-tasks) in Orcad each
run in a separate task context, and are thus large-grained.
While state automata are provided, there is no notion of
state programming, nor active transition routines. Operat-
ing mode switching is supported only by redefining the
entire block diagram for each robot-task.

The next section analyzes ControlShell’s system design
methodology in the context of the issues presented above.

3 Methodology

3.1 Data-Flow Design Methodology
We term any system that has a periodic execution cycle a
data-flow system. This includes most control loops, data
acquisition systems, etc. These systems are sometimes
also referred to assampled-data systems.

Design Cycle The data-flow design process is shown in
Figure1. To design a data-flow system, the developer
must first break the system into manageable components.
Then each component is either implemented or selected
from a library. The next step is to connect the components
into an operational system. Testing the overall system pro-
vides the feedback required to drive a successful design.

Components ControlShell builds data-flow systems
from small, reusable objects calledcomponents. A compo-
nent implements a specific functionality within a sampled-
data environment via methods that run at well-defined
times, such as at each sample-clock tick. By allowing
components to attach easily to these critical times in the
system, ControlShell defines an interface sufficient for
installing (and therefore sharing) generic sampled-data
programs.

Components read input signals, generate output signals,
and use reference signals. Signals many be any of several
types; most are named matrices calledCSMats. Reference
signals are often used for parameters, such as gains, names
of other objects, or file names from which to load data.

Break into

Develop

Use

Connect Implement

Figure 1. Data-Flow Design Cycle

ControlShell provides tools for every phase of the data-
flow design cycle.

Design



Figure2 shows an example of thepdControl component
that implements a simple Proportional-Derivative control-
ler.

Each component is labeled with atype name and an
instance name. The instance names allow components to
be reused in the same diagram. For example, thepdCon-
trol component’s instance name in Figure2 is ArmPD.
Instance names are registered withControlShell’s object
name service. That way, other components and otherCon-
trolShell facilities—such as the finite-state machine—can
bind to them at run-time and call their public methods, etc.
This easy connectivity is a critical feature that allowsCon-
trolShell to support arbitrarily interconnected diagrams.

Each type of component is implemented as a C++ class.
Components are derived either from a common base class,
or from other components. Thus, components are built into
class hierarchies of similar functionality. Derived compo-
nents may hide (e.g. default) functionality or parameters to
form an easier-to-use component, or add functionality to
the base class, forming a more complex or functional com-
ponent.

An example of an easier-to-use derived component is a
Butterworth filter; it implements a simple type of filter
derived from a generic filter class. It takes a few parame-
ters (degree and cutoff frequency) instead of the direct fil-
ter coefficients.

An example of a more functional derived class is a compo-
nent calledCmdNddsConsumer. The CmdNddsConsumer
component is from a base class that interfaces to NDDS.
The base class subscribes to network data items and pro-
vides them for use by the data-flow system. The derived
class also gets the data from the network, but also sends a
stimulus to a state machine announcing data arrival (See
Figure3). These components provide a powerful and sim-
ple means of implementing network-distributed data flow
and reactive behavior.

A library of pre-defined components is provided, ranging
from hardware device drivers and controllers to trajectory
generators and sophisticated motion planning modules.
New or custom components are easily added to the system
via a graphical data interchange editor and C++ code gen-

Reference Pins

Output Pins

Component

Instance Name

Input Pins

Figure 2. Example Component

Type Name

erator. This tool makes building and maintaining hierar-
chies of components simple to manage.

Connections Components are connected within a graphi-
cal tool called theData-Flow Editor (DFE), shown in
Figure4. A system may be built from many separate block
diagrams.

Multiple diagrams are coordinated via the system man-
ager. The system manager builds executing systems from
sets of DFE diagrams. In Figure 4, two systems are set up.
The system named “vx” will execute the actual hardware,
the system named “unix” will execute the simulation. This
capability makes hardware-in-the-loop simulation simple
to set up. A similar setup lets the same high-level code run
on different hardware configurations.

Execution The DFE outputs a textual language that
describes all the connections in the system. The run-time
executive parses the system description file, loads the
required components, and dynamically links the signals

Figure 3. Functional Class Hierarchies

Sophisticated actions can be built from simpler
functional classes. Here, the arrival of a network
command causes a dual arm robotic system to move
an object.

Send stimulus when
packet arrives

Network packet
from GUI

Figure 4. The Data-Flow Editor

The Data-Flow Editor connects components into
systems. Blocks are components; lines on the diagram
represent matrix objects. This diagram is a Cartesian-
space controller for a 4-DOF SCARA robot.



specified in the block diagram (using the object service).
New diagrams may be loaded at any time. Thus, Con-
trolShell systems can be dynamically updated.

All component objects are placed on dynamic lists. The
run-time executive orders the lists, thus scheduling the
components’ execution order to minimize delay. All com-
ponents (that execute at the same sample rate) may then
run as a single task (execution context). In multi-rate
designs, a separate task is used to execute each sample rate
present in the system. This design maintains each object’s
identity, while eliminating task-switch overhead between
blocks.

Configurations Complex real-time systems often have
to operate under many different conditions. The changing
sets of conditions may require drastic changes in execution
patterns. For example, a robotic system coming into con-
tact with a hard surface may have to switch in a force con-
trol algorithm, along with its attendant sensor set,
estimators, trajectory control routines, etc.

ControlShell’s configuration manager directly supports
this type of radical behavior change; it allows entire
groups of modules to be quickly exchanged. Thus, differ-
ent system personalities can be easily interchanged during
execution. This is a great boon during development, when
an application programmer may wish, for example, to
quickly compare controllers. It is also of great utility in
producing a multi-mode system design. By activating
these changes from the state-machine facility (see below),
the system is able to handle easily external events that
cause major changes in system behavior.

Configurations are defined at design time by assigning
components to groupings calledmodule groups andcate-
gories, see [16,12] for details. System mode changes are

Figure 5. The DFE System Manager

The System Manager makes it easy to easily mix and
match subsystems. In this case, it is being used to
alternate between live execution and simulation.

then effected by the run-time configuration manager. It
quickly reconfigures large numbers of active component
objects, essentially redirecting the data-flow paths through
the diagram.

This design offers much finer configuration control than
other systems. By allowing the designer to implement
many configurations on a single diagram, it eliminates the
problems with maintaining several similar diagrams. It
also encourages small changes in data-flow where appro-
priate. The named configurations are (of course) C++
objects, and are listed with the object service. Thus, they
may be bound at run time by any module and activated
when needed. The state programming system (discussed
next) makes good use of this feature.

3.2 State Programming Design Methodology

All complex systems must be strategically guided. Since
real-time systems must operate in a complex, event-rich
environment, this means that the strategic control must
react to many events. However, sequential processing is
not well-suited to managing events. Event-driven pro-
gramming—defining a sequence of events and the actions
to take when the events occur—is much more appropriate.
We term thisstate programming, because the process con-
sists of identifying system states and the events recognized
in those states.

Design Cycle The strategic control design process is
shown in Figure6. To design a strategic control system,
the developer must first formalize the situation—identify
the possible events the system may encounter, and specify
what action the system should take in response to those
events. The next step is to implement the action routines,
or select them from a library. The final step is to connect
the events to actions. Implementing and testing the design
provides the feedback that makes the system work.

To support strategic programming,ControlShell provides
a state-machine programming system, consisting of a real-
time state-machine engine, a graphical state-machine edi-
tor, and a state-transition-module (action routine) genera-

Connect
Events to

Identify
Events and

Build

Use

Implement

Figure 6. Strategic Control Design Cycle

ControlShell formalizes and assists reactive strategic
programming.

Develop



tion and management system.

Transition Modules The ControlShell state-program-
ming system uses executable objects that implement
actions in response to events. Because actions often result
in state transitions, the objects are calledtransition mod-
ules. Transition modules implement a specific action, but
are not intrinsically bound to an event. As with compo-
nents, complex actions can be built by creating class hier-
archies of transition modules.

Transition modules can accept parameters. For instance,
one standard transition routine that activates a trajectory
generator takes as parameters the name of the trajectory
generator, the goal position, the slew time, and even the
name of a configuration to activate before starting the tra-
jectory. At run time, this transition routine will use the
object data service to “hook-up” with the appropriate tra-
jectory generators, configurations and data.

New transition modules are created via a graphical editor
that defines the module’s name, base class, formal parame-
ter list, and possible return codes. A C++ code generator
generates the code required to interface the new object to
the system.

The ability to accept parameters combined with the ability
to inherit the functions of existing transition modules
makes transition modules easy to share and reuse.

Connections Transition modules are bound to events
within the graphical State Programming Editor (SPE).
Events in ControlShell are defined as boolean expressions
of stimuli, where stimuli can be assertions (e.g. “Power =
on”) or triggers (e.g. “Contact”). Specifying a state transi-
tion therefore requires specifying a) a boolean expression
(rule) that triggers the transition, b) the action (transition
module) to execute, and c) the possible next states,
depending on the return status of the transition module.
All these are entered within the graphical SPE tool shown
in Figure4. The result is a graphical description of the
events and actions required to complete a task: a state pro-
gram.

In addition, the tool allows assigning values to the transi-
tion module’s parameters. As with components, transition
modules may use the object service to bind to any other
object in the system. For example, a transition module that
wants to take the action of moving a robot arm could look
up and activate the control configuration that will drive the
arm, and then find the trajectory generator that will cause
the motion and start it. If this action is tied to the stimulus
generated by the CmdNddsConsumer discussed above, it
will allow a complex motion to occur in response to a net-
work command. This easy integration results in consider-
able power.

State Machine EngineThe real-time state machine
engine is designed to provide strategic control, while also
managing concurrency in the system. ControlShell’s state
machine model features rule-based transition conditions,
true callable subroutine hierarchies, task synchronization
and event management. The details are beyond this paper,
see [16,12]. It is, however, worth noting that the callable
state subroutine concept also encourages reusability of
state programs.

Execution As with DFE files, the SPE generates a textual
language description of the state program. This description
is parsed and linked by the run-time executive, and can be
updated dynamically at run time. Each state program is
executed by a separate task; stimuli are sent through mes-
sage queues to the task.

4 The Marsokhod Rover

ControlShell has been used in many applications, includ-
ing:

• Dual-arm cooperating robots
• Free flying space robotic systems
• Adaptive control (several systems)
• Cooperating mobile robot teams
• Underwater vehicle control
• Flexible structure control
• Mini-manipulator control
• Manufacturing workcell integration of planning

and control
• Control of a 7-DOF Robotics Research arm

Figure 7. The State Programming Editor

Blocks in the SPE are states, the arrows represent
transitions. The arrow labels are the boolean
transition trigger expressions and transition module
names. Transition parameters are set by clicking on
the labels.



• Assembly of space structures with a Puma
manipulator

• Wing rivet inspection

One of these systems is shown in Figure8. The vehicle in

the figure is the result of a collaboration between NASA’s
Ames Research Center (ARC), McDonnell Douglas Aero-
space (MDA), NASA’s Johnson Space Center (JSC), the
University of Hawaii, and the Planetary Society (TPS), in
addition to Russian’s Lavochkin Association, VNIITrans-
Mash, and IKI. The project’s immediate goal is to test the
use of virtual-reality (VR) telepresence technology for
controlling extra-terrestrial vehicles.

The exploration vehicle utilizes the six-wheeled Russian
rover (Marsokhod) chassis, a MDA 5 DOF robotic arm,
and the Virtual Environment Vehicle Interface (VEVI) VR
software from Ames [24]. The vehicle carries stereo cam-
eras for range mapping and uses a Global Positioning Sys-
tem (GPS) sensor, magnetic heading sensor, and
inclinometers for terrestrial testing. For future extra-terres-
trial simulations, the vehicle will carry laser mappers and
accelerometers.

The vehicle controller integrates these systems and pro-
vides arm motions, low-level vehicle motion control, state
estimation, remote operations, and the ability to execute
paths through waypoints provided by the virtual reality
interface.

For lunar operation, the vehicle will operate in a teleoper-

Figure 8. The Marsokhod Lunar/Martian Rover

This mobile robotic system is a Russian-designed
platform, with NASA avionics and a ControlShell
controller

ated mode, allowing a VR helmet-wearing operator to
“drive” the vehicle almost as if driving a car. However, the
long communications delays during Martian operation
force more autonomy in the control system in order to
increase mission productivity.

The Marsokhod vehicle is shared between several sites.
An existing wheeled rover based on a power wheelchair
frame (the Mobile Exploration Landrover, MEL) is used
for building and testing of the controls software when the
Marsokhod is unavailable. Code sharing and reusability,
both between sites and vehicles, is therefore critical.

ControlShell’s component-based design allows MEL and
Marsokhod to share virtually all the data-flow and strate-
gic-flow code. The design is a multi-rate, distributed appli-
cation that integrates a graphical user interface running on
UNIX workstations with strategic and low-level control
running on the vehicle computer.

Wheel Control Figure9 shows the vehicle wheel con-

troller for the rover. It implements two modes of control—
a rate controller that accepts direct rate commands and a
path controller that accepts a set of way points. Each con-
troller computes the commanded vehicle velocity that the
“ssWheelController” component (at the right of the figure)
converts to commanded wheel velocities and accelerations
for the hardware wheel-motor drivers (not shown).

ControlShell's configuration management system allows
the system to switch control modes. For instance,
Figure10 shows the “RateControl” components. These
components implement a velocity feedback loop with
desired values from the network interface and the output
of the pose estimator for a feedback signal. The “PathCon-
trol” mode is similarly defined.

The vehicle control takes advantage of several “off the
shelf” components. For instance, the filter component was

Figure 9. Wheel Control

This data-flow diagram implements the wheel-control
logic. It allows both manual operation and autonomous
path following.



convenient for constructing a low pass filter to filter out
noisy encoder position data.

Other components are custom-generated for this project.
For instance, some of the Marsokhod/MEL vehicle sen-
sors (e.g., GPS sensor) provide very slow updates, while
others—such as encoders—provide fast updates. ARC
created a sophisticated, self-configuring Kalman Estimator
that “fuses” the readings from all sensors in the multi-rate
system to provide state estimation for the vehicles. Con-
trolShell's C++ code-generation facility and component
development system were used to integrate these custom
components and device drivers with “standard” modules.

Strategic Control Figure 11and Figure12 show main
features of the Marsokhod control strategy. Network com-
mand packets send stimuli to the finite-state machine, trig-
gering changes in the low-level controller configuration
and trajectory generation. The Idle states in both Figures
represent the same state of the vehicle, where the vehicle
wheel motors and the arm joint motors are not being com-
manded to move.

Figure 11 shows the strategic mode-control logic for the
Marsokhod arm control. The primary driving factor
behind the arm control strategy is to guarantee that the
vehicle does not move while the arm is deployed. Vehicle
motion on rough terrain produces vibrations that can be
damaging to the deployed arm. Thus, only when the sys-
tem is either in the Idle or JointIdle state will the controller
respond to a “ArmJointMove” stimulus from the VEVI
user interface, triggering theArmJointTrajectoryPlan()
transition routine and activating the ArmRateControlCon-
fig configuration. And once the arm has been deployed, it
is necessary to send a “ArmHome” stimulus in order to
bring the arm back to a safe position before the controller
is in the Idle state and ready to receive vehicle motion

Figure 10. Rate Control Mode

Graphical mode definition makes it easy to support
multiple modes. These blocks are enabled when rate-
control mode is active. Trajectory generation, vehicle
pose estimation, and sensor components are also
switched when the mode changes.

commands. A hardware error in the arm joint motors natu-
rally disrupts this strategy since it is no longer physically
possible to “safe” the arm. In this case, the component
overseeing arm joint motion control monitors stops the tra-
jectory and sends a latched “VehState = harderror” stimu-
lus which returns the controller state back to Idle. In this
implementation, subsequent arm commands are matched
with the condition “ArmState = harderror && ArmJoint-
Move” and have no effect.

Figure12 shows the strategic control over vehicle motion.
For instance, a set of way points sent from the VEVI inter-
face causes the “PathMove” stimulus. As illustrated in
Figure 12, this triggers theVehViaPtTrajectoryPlan() tran-
sition routine to plan the trajectory. The transition routine
also activates the “VehiclePathControlConfig” configura-
tion; part of this configuration is the ssPathController com-
ponent that relies on feedback from the state estimator to
command vehicle velocity in order to reach each way
point.

Remote commands also can switch the vehicle into rate
control and change the arm controllers. The transition
modules that provide configuration switching and trajec-
tory activation are standard ControlShell modules. These
modules may be inherited—according to C++ inheritance
rules—to provide additional, customized capabilities.

Figure 11. Arm Strategic Control

This state machine controls the operation of the vehicle,
based on input from the network. Vehicle is commanded
to move along a path or at a given rate.



Experimental Results ControlShell was fully imple-
mented in ROM, and embedded in the Marsokhod vehicle
for a full-system field test in Kilauea Volcano on Hawaii
during February and March of 1995. This site was chosen
for its varied geological features and difficult terrain, mak-
ing it similar to that expected on a planetary surface.

All variables in ControlShell can be monitored with the
StethoScope graphical display tool [12]. Figure13 shows
data taken from the actual vehicle operation, during a sim-
ple forward motion. Figure14 illustrates heading control
from actual vehicle operation, while Figure15 shows path
control of the vehicle in rough terrain with 4 way points.

5 Conclusions

This paper has presented a brief overview of the philoso-
phies behind the ControlShell system. ControlShell is
designed—first and foremost—to be an environment that
enables the development of complex real-time systems.
Emphasis, therefore, has been placed on a clean and open
system structure, powerful system-building tools, and
inter-project code sharing and reuse.

ControlShell is unique in offering:

• Functional object hierarchies, forboth data-flow
modules and action routines.

Figure 12. Vehicle Strategic Control

This state machine controls the operation of the vehicle,
based on input from the network. Vehicle is commanded
to move along a path or at a given rate.

• Integrated state (strategic) and data-flow (servo-
level) programming.

• Object persistence and an object name service,
resulting in unlimited connectivity.

• Fine-grain blocks, executed in a single task con-
text and ordered for minimal delay.

• Sophisticated operating mode (configuration)
management.

ControlShell is in the process of being released as a com-
mercial product. It has already found considerable applica-
tion in universities, government, and industry. For
instance, it has been embraced as the basis for much of the

Figure 13. Vehicle Rate Control Performance

This plot shows a step in desired velocity, and the
resulting feedback and estimated pose rate change. The
estimator uses a slow time constant to insure a noise-
free position signal. This results in the slow velocity
rise time shown.

Figure 14. Vehicle Heading Control Performance

This plot shows actual vehicle heading control as the
vehicle moves. In this example the actual heading has
been artificially changed to 3.0 radians and the desired
heading is 0.0 radians.



new robotics development at NASA Ames Research Cen-
ter and Jet Propulsion Laboratory.

Acknowledgments ControlShell is being jointly
developed by Stanford University and Real-Time Innova-
tions, Inc. Portions of this work were supported under
ARPA contract. The authors wish to thank Dr. R. H. Can-
non, Jr. for his guidance and leadership. The authors
would also like to thank the many developers at Stanford,
Loral, and NASA and other sites who have contributed
ControlShell components.

References
1 D. B. Stewart, D. E. Schmitz, and P. Khosla, “The Chimera II: Real-
Time Operating System for Advanced Sensor-Based Robotic Applica-
tions,” IEEE Transactions on Systems, Man, and Cybernetics, vol 22, no
6, pp1282-1295, December 1192.

2 Wind River Systems, Inc., 1351 Ocean Ave., Emeryville, CA 94608,
VxWorks User's Manual, 1988-1993.

3 Integrated Systems, Inc., 2500 Mission College Boulevard, Santa
Clara, CA 95054, ISI Product Literature, 1990-94.

4 Ready Systems, Inc., VRTX User's Manual, 1994.

5 G. Pardo-Castellote and S. A. Schneider. The Network Data Delivery
Service: Real-Time Data Connectivity for Distributed Control Applica-
tions. In Proceedings of the International Conference on Robotics and
Automation, San Diego, CA, May 1994. IEEE, IEEE Computer Society.

6 Lumia, et. al., “NASREM Robot Control System Standard,” Robotics
and Computer Integrated Manufacturing, vol. 6, no 4, 1989

7 Harel, David, et. al., “StateMate: A Working Environment for the

Figure 15. Vehicle Path Control Performance

This plot shows actual vehicle path control in rough
terrain. The vehicle controller received 4 way points and
successfully moved to each point. Note that loose soil
and rocks prevented the vehicle from moving along a
more optimal path.

Development of Complex Reactive Systems,”, IEE Transactions on Soft-
ware Engineering, V16, n4, April 1990

8 M. Leahey, “Universal Telerobotics Architecture Project,” [reference
will be found in before publication].

9 R. G. Simmons. “Structured Control for Autonomous Robots” IEEE
Transactions on Robotics and Automation, 10(1), February 1994.

10 D. Simon, E. Coste-Maniere, Roger Pissard, “A Reactive Approach
to Underwater-Vehicle Control: The Mixed ORCCAD/PIRAT Program-
ming of the VORTEX Vehicle,” programme 4 - Robotique, Image Et
Vision, Unite De Recherche - INRIA-SOPHIA ANTIPOLIS, Domaine
de Voluceau Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France,
November 1992.

11 The MathWorks, Inc., Cochituate Place, 24 Prime Park Way, Natick
MA 01760, Product Literature, 1990-93.

12 Real-Time Innovations, Inc. 954 Aster, Sunnyvale CA 94086, (408)
720-8312. Product Literature, 1991-95

13 S. Schneider, Experiments in the Dynamic and Strategic Control of
Cooperating Manipulators. Ph.D. thesis, Stanford University, Stanford,
CA 94305, September 1989.

14 S. Schneider and R. H. Cannon, “Object Impedance Control For
Cooperative Manipulation: Theory and Experimental Results,” IEEE
Journal of Robotics and Automation, vol. 8, June 1992.

15 S. A. Schneider and R. H. Cannon, “Experimental Object-level Stra-
tegic Control with Cooperating Manipulators,” The International Journal
of Robotics Research, vol. 12, pp. 338--350, August 1993.

16 S. A. Schneider, V. Chen, and G. Pardo, “ControlShell: a Real-Time
Software Framework,” AIAA Conference on Intelligent Robots in Field,
Factory, Service and Space, March 1994

17 M. A. Ullman, Experiments in Autonomous Navigation and Control
of Multi-Manipulator Free-Flying Space Robots. Ph.D. thesis, Stanford
University, Stanford, CA 94305, March 1993.

18 V. W. Chen, Experiments in Adaptive Control of Multiple Cooperat-
ing Manipulators on a Free-Flying Space Robot. Ph.D. thesis, Stanford
University, Stanford, CA 94305, December 1992.

19 G. Pardo-Castellote, T.-Y. Li, Y. Koga, R. H. C. Jr., J.-C. Latombe,
and S. Schneider, “Experimental Integration of Planning in a Distributed
Control System,” in Preprints of the Third International Symposium on
Experimental Robotics, (Kyoto Japan), October 1993.

20 G. Pardo-Castellote, S. Schneider, and R. Cannon, “Robotic Work-
cell Manufacturing without Scheduling or Fixturing”, IEEE Conference
on Robotics and Automation, May 1995

21 G. Pardo-Castellote, Experiments in the Integration of Planning and
Control of a Dual-Arm Manufacturing Workcell. Ph.D. Thesis, Stanford
University, Stanford CA 94305, 1995

22 B. Selic, G. Gullekson, and P. Ward, “Real-Time Object-Oriented
Modeling,” Wiley and Sons, 1994

23 M. W. Gertz, D. B. Stewart, and P. K. Khosla, “A Software Archi-
tecture-Based Human-Machine Interface for Reconfigurable Sensor-
Based Control Systems,” in Proc of 8th IEEE International Symposium
on Intelligent Control, Chicago, Illinois, August 1993.

24 L. Piguet, T. Fong, B. Hine, and E. Nygren, “VEVI: A Virtual Real-
ity Tool For Robotic Planetary Explorations”, Virtual Reality World ‘95,
February 1995.


